
1

COMP 424 Artificial Intelligence
Course Project: A minimax approach to the

Bohnenspiel game
Yuanhang Yang

McGill University

Abstract—In this report, I demonstrate my work on developing
an Artificial Intelligence (AI) agent to play the Bohnenspiel
game. This AI agent applies minimax search algorithm to make
decisions, as well as α − β pruning to improve computation
efficiency. Results and future improvements are surveyed in this
report.

I. UNDERLYING ALGORITHMS

This section’s explanation mostly comes from this course’s
textbook [3].

A. Minimax search

The minimax search algorithm assumes searching in game
space against an adversarial opponent, with the goal of maxi-
mizing utility. With the opponent present, the agent A assumes
the opponent O would try to minimize A’s utility. A minimax
search agent can optionally have a max level depth of search,
on nodes deeper after which it would not keep exploring its
successor nodes, but instead use an evaluation function to
obtain a value of that state.

B. α− β pruning

The goal of α − β pruning is to decrease the number of
nodes in the game tree that needs to be evaluated. It is based
on an observation on the game tree: at a child node N of
a MAX node, if the maximum utility possible is lower than
another node of the same level, there is no point exploring
the paths to follow N; similar argument can be made for a
child node of a MIN node with expected utility higher than
another node of the same level. This observation effectively
marks many paths within the game tree ”redundant” for the
search algorithm.

II. THE AI AGENT

A. Design choices

The AI agent developed for this project uses minimax search
algorithm with a prescribed search depth of 7, together with a
heuristic function for game states. In addition, α− β pruning
techniques were also applied to improve efficiency. This
combination yielded reasonable results, as discussed in section
IV. Other approaches were also explored but they didn’t make
final submission; these are discussed in sub-section II-C. These
algorithms were chosen because Bohnenspiel is a game with
deterministic moves and a rather small branching factor.

B. Heuristic function selection

Once the algorithm is chosen, the most important task is
to find a good heuristic evaluation function. If the search
was complete, the game results can be directly used as
an exact heuristic. But since this isn’t possible, the agent
faces the challenge of constructing a good heuristic from the
information given by board states.

To empirically compare heuristic effects, I wrote a Sim-
ulator class that can play two players against each other.
I evaluated the following heuristics by simulating a large
number of games between agents with different evaluation
functions:

1) My score.
2) My score ahead of my opponent’s.
3) How close am I to winning.
4) How much closer am I to winning than my opponent.
5) How many moves can I choose from.
6) How many more moves I have to choose from than my

opponent.
7) How many beans are on my side.
8) How many more beans are on my side than my oppo-

nent’s side.
and I observed the following trends: firstly, using the ”dif-
ference from opponent” versions almost always yield better
gameplay results: that is, 2 outperforms 1, 4 outperforms 3,
etc.; secondly, 1,3 and 2,4 seemed to generate highly similar
results; my theory is that since in Bohnenspiel, a win is
guaranteed if and only if 36 beans are captured, heuristics
3 and 4 are perfectly inversely correlated to heuristics 1 and
2.

Based on these observations and the results from simulated
games, I ended up choosing 3 heuristics: numbers 2, 6 and
8. Of the three, heuristic 2 and 8 are suggested by [1], and
heuristic 6 comes from my own understanding of the game.
Heuristic 2 makes the agent try to stay ahead in the game.
Heuristic 6 tries to always keep more options on the table for
the agent possible. Heuristic 8 tries to keep more beans on the
agent’s side, as they are more likely going to convert into the
agent’s points.

The next step was to tune the weights of the three heuristics.
This was done in two steps: firstly, multiple games were
run between agents with only one heuristic weight different;
secondly, assuming the heuristics are independent from each
other, search near the combination of the best weights found



2

individually in the first step to obtain the final results. This
assumption was necessary because I didn’t have enough time
to run the number of games required without it, so I had to
pinpoint a weight value for each heuristic, and then refine
locally. After extensive trial-and-error games, the evaluation
function for a state S is set to be:

2.1 * (MyScore - OpponentScore) + 0.45 * (Beans on
my side - beans on opponent’s side) + 0.6 * (Non-empty
pits on my side - non-empty pits on opponent’s side).

C. Other approaches explored
A few other methods were explored in my attempt to im-

prove the AI agent’s performance. However, the agent showed
no noticeable improvement with any of them, compared to
using the heuristic described in II-B.

Firstly, I attempted to adjust the heuristics’ weights over
the progress of each game. The intuition behind this is that
information in heuristics may have different values in different
stages of the game. Specifically, I suspected that the ”beans
on my side - beans on opponent side” should have relatively
increasing weights during gameplay compared to the other
two, because the closer we are to the end of a game, the more
likely that beans on our side would be directly captured by us.
However, after trying a few models of such a trend, including
linear, square root and quadratic functions, no noticeable
pattern of improvement was found.

Secondly, seeing that many peer students are implementing
minimax-based agents, I observed that when two agents play
against each other, the outcomes never vary. Hence I thought
about allowing the agent to perform random moves with a
decreasing probability over the gameplay, in order to escape
local decision traps - an idea similar to the simulated annealing
algorithm. I attempted to find research works on whether or
not this is possible for incomplete minimax searches (because,
as we have learned in course tutorials, playing random moves
against a complete minimax search agent is not a good idea).
In the end, this attempt yielded no positive results.

III. RESULTS

In the end, the agent with the 3-factor heuristic evaluation
function showed reasonable performance. I wrote a program
to play my agent against Random and Greedy players 1000
times each, and the agent achieved full victory records against
both.

On the other hand, as I was tuning the weights of the 3
heuristics, I observed what I would call the ”paper-scissor-
stone effect”, where 3 sets of different weights A, B and
C would result in A beating B, B beating C and C beating
A. This was also observed when I use different weights in
my agent to play my friends’ agents. This effect leads me
to believe that plain heuristics can only take you so far, and
further improvements ought to be done by techniques other
than tuning heuristic weights.

IV. DISCUSSION

A. Strengths and weaknesses
My approach has the advantage of being intuitive and

straightforward: the algorithm used has no surprise element

in it; in the contrary, most of my efforts were spent on
improving the heuristic evaluation function. Because I ran
extensive searches to tune the weights of the 3 heuristics, my
agent outperforms others using the same plain heuristic model,
especially those with less than 3 heuristics.

On the other hand, this approach does not take advan-
tage of the structure of Bohnenspiel game; that is, it is a
general-purpose approach that doesn’t read any pre-trained
data regarding this game tree. This not only makes state
evaluation potentially inaccurate, but also decreases efficiency,
so it cannot foresee too far into the game: with a search depth
of only 7, other agents with a larger search depth can easily
outperform it, even with much simpler heuristics. One way to
mitigate this is discussed in the next section, IV-B.

B. Future works

To conclude this report, I propose the following possible
approaches to improve the works presented. First of all, the
tournament allowed the first move to be made in 30 seconds,
a generous time window my agent isn’t currently taking
advantage of. The way I see it, even with the same underlying
algorithm, the 30 seconds can lead to a great improvement
in agent performance. As an example, consider writing a
program to explore all possible states in the game and build
the complete search tree, serializing the results into a disk
file, and use the 30 seconds to read the file, de-serialize the
search tree, and use that pre-constructed (perfect) information
to achieve the optimal utilities in all circumstances.

Secondly, another option is to use a completely different
set of algorithms. A good example is the Monte Carlo Tree
Search (MCTS) algorithms. Although hard to implement,
MCTS algorithms have shown very pleasant performances in
game spaces searches. In particular, researches have shown
that, in partial game settings, decisions made by MCTS family
algorithms can be superior to those of minimax search in
regions of the search space with no or few terminal nodes, such
as Mancala or Bohnenspiel, where there is only one terminal
node: a board with 12 empty pits [2]. This suggests that MCTS
may eventually be a better solution to the Bohnenspiel game,
under computation budget constraints.

REFERENCES

[1] Chris Gifford, James Bley, Dayo Ajayi, and Zach Thomp-
son. Searching & game playing: An artificial intelligence
approach to mancala. Technical report, Technical Re-
port ITTC-FY2009-TR-03050-03, Information Telecom-
munication and Technology Center, University of Kansas,
Lawrence, KS, 2008.

[2] Raghuram Ramanujan and Bart Selman. Trade-offs in
sampling-based adversarial planning. In ICAPS, pages
202–209, 2011.

[3] Stuart Russell, Peter Norvig, and Artificial Intelligence.
A modern approach. Artificial Intelligence. Prentice-Hall,
Egnlewood Cliffs, 25:27, 1995.


