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Abstract— We demonstrate the working of different methods,
namely Logistic Regression, Feedforward Neural Network, Con-
volutional Neural Network, in classifying images from a small
subset of ImageNet database. We comment on the effectiveness
of all employed methods. Our tests find that Inception v3 CNN
has the highest validation accuracy of 88.00% among these
methods, and scored 88.00% on Kaggle competition.

I. INTRODUCTION

This paper demonstrates our work in classifying images
from a small subset of ImageNet database, with only 26,334
training images from 40 categories.A baseline logistic re-
gression classifier and a fully-connected feedforward neural
network were used by our team. Furthermore, we used library
for an implementation of convolutional neural network using
TF-learn. Finally, we used transfer learning on the pre-trained
Inception-v3 model which yielded the highest accuracy of
88% on Kaggle. Our highest accuracies for logistic regres-
sion is 23.2%, as shown by Kaggle. For feedforward NN,
validation on reserved training data showed an accuracy of
29.56%. Discussion of these three approaches is provided in
Section VI.

II. RELATED WORK

A. Logistic regression

Logistic regression is very challenging to perform on
large-scale data sets, especially when the feature space is of
high dimension: defining the hyper-planes to split up a large
number of data points can naturally be hard. An interesting
way around it was presented in a paper [1] talking about
optimizing multiclass logistic regression (MLR) by using
stochastic gradient descent, and the authors also noted a way
to reduce the cost by taking advantage of the structure of
the gradient matrix. But since logistic regression is not the
main topic on the project, we decided to focus our energy on
other approaches and simply use regular logistic regression
techniques.

B. Feedforward Neural Networks

For the last few years, Artificial Neural Networks (ANN)
has been an area of a lot of research, especially in terms of its
image classification abilities. This is due to the imperative
impact it has in a myriad of fields including Cancer and
Alzheimer’s disease research. The inherent structure of ANN
allows the algorithm to process data that is generally charac-
terized to be noisy in high dimension, complex, imprecise,

or error-prone[2]. The reason that ANNs are very powerful
against classification problems is that, they are able to deal
with many technical problems, one of the main being the
”Curse of Dimensionality”[3]. Implementation of an ANN
can be done in many different ways[4]. We follow the
backpropagation method in this paper which is the most
common method of training multi-layer networks[5].

C. Convolutional Neural Networks

Simple Neural Networks cannot capture the hierarchical
structure of an image. This makes it difficult for the neural
network to be unaffected by transformations and deforma-
tions in images. Consequently, we have to incorporate the
concept of translational invariance in our neural network and
using convolutions is one efficient way to do it. [6]

Recently, convolutional neural networks have achieved
unprecedented levels of accuracy for image classification on
large benchmark data sets such as ImageNet. [7]

Domain adaption of learned classifiers is also an effective
strategy that can be employed to avoid the large data sets
and high computational resources required to train deep
convolutional neural networks from scratch. The notion of
transfer learning has been researched as part of domain
adaption. It was employed by Blitzer et al. who adapted
sentiment classifiers originally trained on book reviews to
reviews for kitchen appliances[8]. Similar work has been
done for adapting visual classifiers to new image data
which has yielded positive results [9]. Consequently, domain
adaption has emerged as an effective strategy to use models
trained on large data sets and then transfer the model’s object
knowledge to classify on novel domains.

III. PROBLEM REPRESENTATION

The data provided to us was an array of images, encoded
into an NumPy array of dimension 26344 ∗ 3 ∗ 64 ∗ 64,
where each value represents a pixel’s RGB values for each
of the 26,344 images (64 * 64 pixels). Data pre-processing
and feature design were handled differently for the three
techniques.

A. Logistic regression

For the logistic regression learner, the large NumPy array
is not directly usable because it expects 1- or 2-dimensional
arrays as input. We reshaped the training and testing image
data from a 4-dimensional array into a 2-dimensional array.



This is done by simply concatenating all rows of an image
matrix into a single row, hence representing each image with
a 1D array. An illustration is provided in figure 1.

Fig. 1. Illustration of data reshaping for logistic regression. Showing 3x3
pixels images as example, but real data is 64x64

Due to time constraints, we didn’t focus on feature selec-
tion for logistic regression: even with only 75% training data
(about 19,750 images), the running time of our script on the
best virtual machine we could afford was about 11 hours,
making cross-validation over different feature combinations
impractical. Besides, we spent more time on neural networks
methods because we expect them to suit the occasion better
than logistic regression. For these reasons, we simply used
all information given in the data set, rather than handpicking
features to use.

B. Feedforward Neural Network

In order to optimize the algorithm the data was recon-
structed to create new data structures. The reshaping of each
image is similar to what was done in Logistic Regression, as
shown in figure 1. However, while storing the information,
each image is stored as a column vector and not a row vector.

A list of 2 entry tuples was created to contain information
about the image and the class it belongs to. The list looks
like: [(x,y)].

1) x: Each x represents 1 image. Each image is repre-
sented by pixels. To structurally denote this, we created
a numpy ndarray of size ’n’ (changes depending on
training or validation). Each element of this array is a
numpy ndarray of size 12288 (64*64*3) which is the
number of pixels in each image.

2) y: y is an array of numbers where each element is a
number between 0-39. This represents the class of the
image. The size of y also depends on whether we are
dealing with the training or validation set.

C. Convolutional Neural Networks

1) TFLearn: For the implementation of Convolutional
Neural Networks using TFLearn, we first zero-centered the
data and then normalized it. Even though the relative scales
of image pixels are approximately equal, normalizing the

values can still help us make the data consistent in the
scenario where the images on the ImageNet were taken from
different sources with varied RGB scaling.

Data augmentation was done by adding random left and
right flips to the images. Furthermore, random rotations were
added to the images to further augment the data on which
the model can be trained on.

2) Inception v3: For fine-tuning of Inception-v3 model,
the images were initially re-sized to a size of 299 * 299,
by inserting padding, as the pre-training on inception-v3
has been performed using that size. However, with no
significant increase in accuracy the images were restored
to their original size of 64 * 64 as the computation with
smaller images was relatively faster. Yet, additional images
were added from ImageNet data set for categories producing
the highest number of misclassifications, which were then re-
sized to 64 * 64 to be consistent with the previous data set.

IV. ALGORITHM SELECTION AND
IMPLEMENTATION

A. Logistic regression

Scikit-learn’s linear model.LogisticRegression model
was used to perform the logistic regression learning. Our
work was mostly around pre-processing the image data
(to fit the model’s requirement the input data’s dimension
had to be at most 2 - see section III-A), and producing
testing/validation results (confusion matrix). For validation,
we reserved 25% of the data for validation, and arrived at
the results presented in section V-A.

B. Feedforward Neural Networks

Based on related readings and previous exposure to Ma-
chine Learning we know that often the process of choosing
optimal hyper-parameters is empirical and heuristic. We
decided to optimize the FNN with a simple, naive cross-
validation process to prevent an exhaustive search of optimal
parameters. We tried a few arbitrary combinations, picked
the ones with best empirical results, and ”locally” refined
the values based on the results.

Initially, we compared the difference between a single hid-
den layer and multiple hidden layers other hyper-parameters
ceteris paribus. In this we discovered that increasing the
number of layers doesn’t improve accuracy, so we only used
a single hidden layer FNN. With more computational power,
we definitely could look into improvements with multi-layer
FNNs.

Using our naive cross validator, we set a few possible
values for each of the hyper-parameters, and tested their
effect on accuracy and performance. To start out tried to
find a subset of parameters that gave us a better result than
the random predictor - 2.5%.[10]

Our algorithm is a simple Feedforward and Backprop-
agation supervised learning classifier. Understanding and
implementing the appropriate mathematical functions played
an important role in optimizing our model.

We chose to work with sigmoid neurons as they output a
value between 0 and 1. This allows us to modify the weights



and biases, during each epoch, to optimize the classification.
Modifications to the weights and biases were done by the
following equations:
• Activation function: σ(wx + b)
• Sigmoid function: σ(z) ≡ 1

1+e−z

A way to test our model’s efficiency we need to minimize
the input functions. In order to do so, the gradient descent
must decay to the global minima. For efficiency reasons we
implemented the stochastic gradient descent method.

Stochastic gradient works by randomly picking out m
samples from the training set thus creating a batch. We esti-
mate the gradient 5C by computing 4Cx for these batches.
This helps us optimize the training process. The weights and
biases are computed and updated by the following equations
[10]:
• wk− > w′k = wk − η

mΣj
δCxj
δwk

• bk− > b′k = bk − η
mΣj

δCxj
δbk

Other related equations [10] can be found in the appendix.
To determine which cost function to use we implemented

the Feedforward algorithm on two cost functions:
• Mean Square Error cost function
• Cross Entropy cost function - This is what we decided

to implement.
Backpropagation helps us compute the error and the cost

of the gradient function. It is an efficient and popular
algorithm to do the same. To further optimize the results
we incorporated L2 regularization.

C. Convolutional Neural Networks

Due to the high number of dimensions involved, the
fully-connected neuron structure of regular neural networks
does not scale well with images of high pixel density.
Consequently, CNN consists of specialized layers where not
all neurons are connected to each other.

1) TFLearn: The TFLearn Convolutional Neural Network
created was trained on the augmented data using random
flips and rotations. The baseline network structure starts off
with a 64 * 64 pixel image as the input where it is followed
by a convolutional input layer with 64 feature maps with a
size of 3 * 3 and uses a rectifier linear activation function.
This forms the 3D spatial arrangement of filters, where max
pooling layer performs a down-sampling operation along the
spatial dimensions resulting in a smaller volume. The pooling
layer is followed by 2 additional convolutional layers with
128 feature maps followed by a dropout layer with p = 0.5. It
ends with a fully connected layer with a softmax activation
function and 40 output units making the predictions. The
CNN architecture can be seen in Fig 7 in the Appendix.

The network is then trained with the learning rate initial-
ized to 0.001 and uses cross entropy as the loss function.
For optimization, it uses ADAM to compute the adaptive
learning rate which has shown significant success with sparse
gradients that lead it to converge faster. [11]

The dropout layer has proven to be an efficient regular-
ization method, by reducing the variance in the model. [12]
With p=0.5, we randomly delete 50% of the units during

forward and backpropagation iterations, that will allow the
network to learn a more robust set of features. The technique
helps us to decrease co-dependence of units on each other
in the network.

2) Inception: Training a deep convolutional network from
scratch requires enormous amount of computational power
and data. However, transfer learning reduces overhead by
simply training the last layer of a pre-trained CNN where
the weights from previous hidden layers are locked and only
the weights for the final layer are retrained for the specific
data set at hand as seen in Figure 9.

Googles Inception-v3 and VGG-16 were few of the pre-
trained models that generalized well when used for transfer
learning. However, the Inception v3 has been pre-trained on
the ILSVRC 2014 data set and has produced the best results
on the Image Net challenge. [13]. Consequently, it was the
clear choice for the pre-trained model used for our data set.

The optimal set of hyper-parameters was chosen by doing
cross-validation on different hyper-parameter combinations
that have yielded successful results. [14] These included
selecting values for the number of training steps, the initial
learning rate and the train batch size. The combinations that
produced significant differences in accuracy are listed in
Table V in the Appendix. The optimal combination of hyper-
parameter values is shown in the Testing and Validation
section.

V. TESTING AND VALIDATION
A. Logistic regression

For logistic regression learner, 25% of training data was
reserved for validation. Upon the model trained with 75%
of training data, we achieved an accuracy of 23.2% on
the testing data, according to Kaggle scoring. The 25%
validation data showed us the confusion matrix in figure 2.

Fig. 2. Confusion matrix obtained from reserved validation data.

As soon as seeing the accuracy is only 23.2%, one would
naturally assume the confusion matrix won’t show the nice,
distinct diagonal indicating strong classification results. This
is indeed the case here. Two observations were made on
this confusion matrix. Firstly, a faint diagonal from top-left
to bottom-right could still be spotted, although much less
convincing than desired. Secondly, the warmer colors pile



up in the leftmost three columns, implying the categories
most often confused for are the first three. We believe this is
due to their sheer volumes: compared to the later categories,
some of which having only hundreds of images, the first
three categories contain approximately 8000, 4000 and 2000
images, hence the classifier is more inclined to them. Another
piece of evidence for this theory is the fact that, even the
diagonal appears faint in general, its much more distinctive
in the top-left corner of the matrix than the rest.

B. Feedforward Neural Network

After testing various hyper parameters, we obtained an
optimal accuracy of 29.56%. Table I below lists the hyper
parameters used to obtain this result.

TABLE I
HYPER-PARAMETERS USED IN THE FNN ALGORITHM

Epochs Learn Rate Lambda No. of Neurons Batch Size
30 0.2 5.0 100 10

The naive cross validator was used to find these hyperpa-
rameters as discussed in Algorithm Implementation.

Based on empirical tests we found that changing the
learning rate had a significant effect on our results. Initially,
we decided to test the various learning rates on the entire data
set. Figure 5 in the appendix showcases this relationship.
We realized that a learning rate as low as 0.01 saturated
the gradient descent after the first few epochs. Infact, as
seen Figure 6. the accuracy with this hyper parameter never
changed. This means that the model wasn’t training. With
a 0.5 learning rate the model does seem to perform better.
In fact the line of best fit generated for 0.5’s data shows
an increasing exponential trend in accuracy 6. Seeing such
results we decided to perform more tests with different
hyper parameters but on a smaller subset of data to save
on computation time.

As we can see from Figure 3 below, even though the data
set sizes were smaller, the trend is quite similar. In fact after
seeing this performance we realized that 0.2 is better than
0.5. It starts off at a lower cost and reaches the global minima
at approx. the same instance as 0.5.

It should be noted that although the cost functions do
change quite dramatically, the accuracy did not increase
beyond 29%. We could have improved the accuracy and
tested out various other parameters; however, the time and
computational cost were too high to do the same.

C. Convolutional Neural Networks

The data was split into train, validation and test sets with
percentages of 80%, 10% and 10%, respectively. The split
was stratified to ensure that the ratios of different category
images remains consistent across all three sets.

1) TFLearn: Initially, with the number of epochs set to
20, the model gave an accuracy of 55%. Increasing the
number of epochs to 50 increased the accuracy to 65.1%. A
further increase in epochs did not yield a significant increase
in the accuracy of the model. Additionally, setting dropout

Fig. 3.
Visualizing cost of FNN for 5 different learning rates.

Training = 5000; Validation = 400

TABLE II
ACCURACIES OF THE DIFFERENT CNN MODELS

Model Accuracy
TFLearn 67.3%

Inception-v3 88%

layer to 30% instead of the recommended 50% increased the
accuracy to 67.3%.

2) Inception: With default hyper-parameter settings, the
retrained model produced an accuracy of 84.06%. Table III

TABLE III
INITIAL COMBINATION OF HYPER-PARAMETERS

learn rate train steps train batch size
0.01 4000 100

Finding the right hyper-parameters values, using cross-
validation, for retraining the last layer played a huge part
in increasing the accuracy of the inception-v3 model from
84.06% to 88.00%. Using a larger initial learning rate of
0.05 helps the model to explore in the early stages of the
algorithm and allow larger changes in weight values, which
helps explains the gain in accuracy. Table IV shows the
hyper-parameters that gave the highest accuracy and best
score on Kaggle. Fig 4 and Fig 8 (Appendix) shows the
cross entropy and accuracy of the model while it is being
trained.

TABLE IV
COMBINATION OF HYPER-PARAMETERS WITH HIGHEST ACCURACY

learn rate train steps train batch size
0.05 8000 100

With the best running model, we had 343 misclassified
images from a test set of 2600 images. The missclassifica-
tions were prevalent in classes 19 and 23, and is elaborated
further in the Discussion section.



Fig. 4. Cross entropy with respect to number of training steps Orange=test
Blue=validation

VI. DISCUSSION

A. Logistic regression

To recap, we never planned to count on logistic regression
to give us the decisive results on Kaggle, due to its long
running time and unsatisfactory performance. For this reason,
we did the logistic regression part in ”fast-forward” mode,
focusing on generating some results rather than exhaustively
optimizing them.

The pro of this method is its simplicity and straightfor-
wardness. Since we were allowed to use external libraries
(scikit-learn, by our choice), the only heavy-lifting for us
are data pre-processing and validation.

The cons of this method are easy to spot: first of all, high-
dimensional feature space and large data set is a known
bad combination for running time of logistic regression.
With a provisioned virtual machine with 4 cores and 28
GB of RAM, our logistic regression learner still required
approximately 11 hours to learn against 75% of the training
data. Second of all, with as many as 40 categories and an
imbalanced data set (see section V-A), the prediction results
are less than satisfactory, even though higher than a random
predictor.

We believe one way to improve the results is to balance
the data set, giving each category approximately the same
number of image instances. But we don’t think the running
time issue can be easily resolved without some optimization
tricks, such as the ones discussed in [1]. Another possible
approach is the apply SIFT feature extraction to feed the
learner with more ”meaningful” image data, rather than raw
data as-is.

B. Feedforward Neural Network

One interesting aspect of our FNN implementation is its
running time: it is just fast enough to produce results in a
reasonable time frame, but too slow to allow extensive cross-
validation. In general, on a virtual machine with 8 cores and
30 GB of RAM, an epoch takes 3-5 minutes depending on
hyper-parameters, and accuracy improvement usually slows
down after just a few epochs, so we can expect relatively
”close to peak” results within an hour, an improvement from
logistic regression (see section VI-A). However, this rate isn’t
enough for us to scan a broad range of hyper-parameters in

cross-validation, so we had to pick our hyper-parameters in
a partially arbitrary manner (see section IV-B).

The nature of neural network differs from statistical model
(such as logistic regression) in that it has multiple ports for
input data to come in, unlike statistical models with a single
input channel. This makes neural networks more versatile in
dealing with higher-dimensional feature spaces, an apparent
advantage over logistic regression. But the higher level of
sophistication also leads to less than optimal training time,
making cross-validation difficult.

Our naive cross-validation was a negotiation with the
reality that running time doesn’t permit too many cross-
validation iterations. To an extent, our approach is an ac-
ceptable way around the situation, allowing us to finish the
task. On the other hand, it leaves the possibility of improving
the results by exhaustive searching of better parameters.

C. Convolutional Neural Networks

A weakness of the transfer learning strategy is that the
trained classifier will not be able to beat the performance of
a deep CNN which has been trained from scratch. However,
when training a deep CNN from scratch, we can use the
weights from a pre-trained model as initial values and then
retrain these weights using the custom data set. This strategy
will facilitate in converging faster than initializing the weight
vectors to random values.

To further improve accuracy, the Inception-v3 should have
been retrained on images of size 299 * 299 instead of 64 *
64. This is because the pre-trained weights were obtained
using ImageNet images of size 299 * 299 and using a new
size to train the final layer can lead to possible discrepancies
in the new weights.

High number of misclassifications were noted for certain
classes, most notably for 19 and 23 which corresponded
to zucchini and cucumber datasets. A major reason for
misclassification is the visual similarity of the two objects
with the only significant differentiating factor being the
striations on the zucchini skin. The striations are not visible
in an image with lower pixel density, which can be improved
by using images of higher resolution for future training
datasets.

VII. STATEMENT OF CONTRIBUTIONS

1) Chhetri: Manual feedforward neural network imple-
mentation; report writing.

2) Rawlani: CNN network with TF-Learn implementa-
tion; inception-v3 network for retraining and predicting
setup; report writing.

3) Yang: Logistic regression implementation; feedforward
neural network debugging and cross-validation; report
writing.

We hereby state that all the work presented in this report
is that of the authors.
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VIII. APPENDIX

Stochastic Gradient Descent Equations
Let C denote the function with m parameters.
So m = v1....vm

• 4C ≈ 5 C + 4 v
Where 5C is the gradient vector

• We can find the change in v by:
4v = −η5 C
where η is the learning rate

TABLE V
HYPER PARAMETERS VALUES USED FOR INCEPTION V3

learn rate train steps train accuracy validation accuracy test accuracy (%)
0.01 3700 93.2% 78.3% 85.3%
0.01 4000 96.7% 78.7% 85.4%
0.01 5500 96.5% 76.7% 85.8%
0.01 8000 95.5% 83.6% 86.3%
0.01 12000 97.5% 83.3% 86.7%
0.05 3700 92.7% 68.7% 86.9%
0.05 4000 95.7% 79.9% 87.1%
0.05 5500 96.3% 81.1% 86.7%
0.05 8000 97.4% 83.9% 87.9%
0.05 12000 98.0% 83.6% 87.4%

Fig. 5. Visualizing cost of FNN for 3 different learning rates. Training =
21,075; Validation = 5269

Fig. 6. Visualizing the accuracy of FNN for 3 different learning rates.
Training = 5000; Validation = 400

Fig. 7. The architecture of TFLearn Convolutional Neural Network

Fig. 8. Accuracy with respect to number of training steps. Orange=test
Blue=validation

Fig. 9. Visualizing the concept of transfer learning for pre-trained models.


