
COMP 551 Applied Machine Learning
Project Report: Text Classifier

TheThreeRedditteers

Shuonan Dong
shuonan.dong@mail.mcgill.ca

Owen Li
owen.li@mail.mcgill.ca

Yuanhang Yang
yuanhang.yang@mail.mcgill.ca

I. INTRODUCTION

This paper demonstrates our work in classifying con-
versations from Reddit websites with eight different top-
ics (hockey, movies, nba, news, nfl, politics, soccer and
worldnews). The training data set contains 165,000 samples
with around 20,000 conversations in each category. Naive
Bayes and decision tree algorithms are implemented by
our team and the performances are compared with that
of the support vector machine (SVM) and Naive Bayes
methods from scikit-learn library. According to Kaggle, our
highest accuracies for these three algorithms are 76.49%,
70.11%, and 96.70%, respectively. Discussion of these three
approaches are provided in Section VI.

II. RELATED WORK

A. Naive Bayes in text classification

Naive Bayes initially caught our interest for its relative
simplicity in implementation, and further so after Prof. Che-
ung mentioned it commonly being used for text classification
in real-world products. In reviewing the literature on Naive
Bayes for text classification, McCallum and Nigam’s paper
[1] pointed out some differences between two Naive Bayes
probabilistic models: multi-variate Bernoulli model, and the
multinomial model. This paper summarized that, among
other aspects, the multinomial model generally outperforms
multi-variate Bernoulli models given large vocabulary sizes.
Our implementation using multinomial Naive Bayes func-
tionality from scikit-learn indeed outperformed our imple-
mentation of the multi-variate Bernoulli model.

B. SVM in text classification

We cast a good deal of interest in using SVM in this
challenge, initially because of the idea that word frequencies
in texts can represent high-dimensional vectors, and the
fact that SVMs learn regardless of the dimensionality of
feature spaces. In addition, one particular paper by Joachims
[2] pointed out the (theoretical) advantages of using SVM
for text classification: high dimensional input space, few
irrelevant features, sparse document vectors, and linear-
separability of most text categorization problems. Since SVM
implementation can be tedious, we decided to apply SVM
functionalities provided in the scikit-learn library.

III. PROBLEM REPRESENTATION

A. Data pre-processing methods

Our data pre-processing work relied on leveraging the
capabilities of machine learning libraries: scikit-learn, NLTK,
BeautifulSoup, etc. The pipeline of data pre-processing con-
verts the raw data into arrays of integer-valued vectors, in
the following steps:

1) Read the CSV file into data frames.
2) Parse each conversation from an HTML-formatted

document into plain text.
3) Filter out any text element that isn’t in the English

alphabet: numbers, punctuations, accented letters, etc.
4) Get rid of stop words. The list of stop words are deter-

mined through a visual inspection of the frequency of
words across the total data, specifically targettng words
with a nonsensical meaning, as well as common words
found in all categories of the data. This is done with the
aim of filtering the raw data into distinct, proper words
that will serve to discriminate topics of conversation
from one another.

5) For the Naive Bayes implementation, an extra lemma-
tization step is performed here: verbs and nouns are
brought down to their original form, such that e.g.
”American” and ”America” will be treated as the same
word.

6) Convert the array of text into feature vectors. Since
features used, and the form they take are different
in each method, this step is further discussed in sub-
section III-B.

B. Feature design/selection methods

For Naive Bayes and SVM, the scikit-learn function
CountVectorizer was used to convert the array of texts into
a matrix of token counts, resulting in a much larger matrix:
about 17,000 features for Naive Bayes and 93,059 for SVM.
Note that Naive Bayes had fewer features because only words
that appeared in more than 15 conversations were counted
as a feature. Entries of this matrix are then further processed
from simple occurrence counts into TF-IDF (Term Frequency
- Inverse Document Frequency) counts. At this point, the
feature matrix is ready to be used by the classifiers. TF-IDF
metrics are used to represent the significance of a word in a
collection of documents.

Worldnews NBA Hockey Politics Soccer NFL Movies News
4217 isis 5634 nba 7322 game 5210 obama 4220 world 6924 nfl 15939 movie 4910 police

4207 israel 5363 game 4600 nhl 3563 right 3861 goal 6848 twitter 6423 movies 2515 news
3952 russia 4035 twitter 4245 imgur 3354 republicans 3578 league 4655 game 6258 imgur 2409 right

3886 uk 3972 lebron 4223 hockey 3120 org 3433 players 3390 season 5144 film 2289 going
3732 world 2883 player 3836 twitter 2672 want 3414 player 2794 qb 4474 youtube 2181 make

2969 co 2498 youtube 2674 thread 2625 government 3365 cup 2536 play 3410 first 2109 want
2909 news 2420 season 2669 season 2617 vote 3321 gfycat 2498 going 3311 trailer 2019 new
2704 war 2263 best 2385 play 2599 money 3129 imgur 2490 best 2715 best 1990 shit
2426 right 2227 play 2283 last 2505 gop 3075 co 2396 teams 2646 great 1940 state

2331 country 2207 players 2199 fans 2454 state 3045 game 2358 last 2548 make 1937 someone
2223 going 2159 kobe 2171 youtube 2360 republican 2994 season 2328 player 2506 watch 1931 money
2082 want 2037 better 2130 first 2335 police 2858 football 2284 first 2458 new 1886 years

2011 ukraine 1973 back 2119 going 2324 president 2790 uk 2224 bowl 2446 star 1824 cops
1985 russian 1918 going 2110 back 2289 make 2784 match 2221 years 2318 made 1820 way

1941 way 1904 imgur 2094 games 2091 party 2717 best 2192 brady 2254 films 1751 something

TABLE I
15 MOST FREQUENT WORDS IN EACH CATEGORY

For the decision tree classifier, the first step is to
select the highest frequency words for each topic. Each word
represents a ”feature” that will be evaluated when deciding
on the optimal splits in the tree. The number of words chosen
to represent each topic was chosen through a trial process,
although it is worth noting that beyond 100 most common
words, further inclusion of distinguishing words becomes
insignificant to the results. These words are then merged into
a comprehensive list, which represents the most commonly
used words in the entire dataset. For each conversation, if
the conversation does indeed contain the word, it will be
marked with a 1, and a 0 otherwise. The goal of this boolean
assignment is to attempt to identify patterns of similarity
between these occurrence vectors. This list of occurrences
will be used as input in the recursive construction of the
tree.

IV. ALGORITHM SELECTION AND
IMPLEMENTATION

A. Linear classification: Naive Bayes

Two kinds of Naive Bayes implementations are com-
monly used for text classification purposes, as discussed in
section II-A. The method implemented from scratch was the
multivariate Bernoulli model. The Naive Bayes algorithm
gives a predicted class Ci by solving argminCi

P (Ci|W)
given the word vector (bag of words and their occurrences)
W of an unseen data point x. The Naive Bayes classifier
is a generative model, where we compute the likelihood
P (W |Ci) based on the training data and then use Bayes
rule to estimate P (Cj |W). In this context, Ci represents the
ith category, and Wj the jth word in the bag of words. Note
that for text classification purposes,

P (Wj|Ci) =
Nj + 1

N + |V |
,

where V is the set of words, |V | is the number of unique
words in V , Nj is the frequency of word j in all conversations
in Ci category, and N the sum of total occurrences of all
words in Ci (that is, the ”word count” of Ci). The size of
the uni-gram used in the algorithm is around 17,000, which
is summed up from the most frequent 2000 words of each
category. To reduce the computation time and redundant
work in the code, lemmatization used during the training
process contributed to reducing the size of the token set.

B. Non-linear classification: Decision Trees

The idea of decision trees in text classification is to
construct a tree from distinguishing ”words”.In this imple-
mentation, the tree is constructed with a greedy top down
recursive approach. The methodology follows a very intuitive
line of thought. A root node is chosen on the first instance
of recursion. Semantically, this node represents the most
distinguishing word in the dataset, such that all words that
will be partitioned to the left of it will fall into some
subset of topics, and those partitioned to the right will
fall into another subset of topics. These two partitions are
disjoint. The process of evaluating which node produces an
optimal binary split of the data is done through calculating
entropy values of the dataset before and after the split. This
calculation is repeated for each ”feature” in the occurrence
vector, such that the data will be split on each word. This
provides a measure of information gain for each split, the
highest of which will be chosen as the optimal split. The
tree is built recursively in this manner.

This top down greedy approach, while intuitive and
simple to implement, has drawbacks. The recursive splitting
of the data has no means of termination prior to reaching
an empty set. This condition leads to possible overfitting of
the tree, as the branches will become overly complex and
specific to the training data. The solution proposed in this
implementation is to limit the depth of the tree, such that
upon reaching a certain depth on any branch, the next node
beyond a preconfigured threshold will be made a leaf node.
The content of this leaf node is the most common topic of
the remaining conversations in that branch.

Since the accuracy of the test set predictions are verified
on Kaggle, the implementation concerned itself with only
training and validation sets. K-Fold validation was used, with
K=5.

C. Libraries

To leverage the capabilities of SVM, the built-in SVM
feature in the sci-kit learn library was used. Given the pre-
processed data, as described in section III-A, it is very
straightforward to use the SVM functionality in a library:
a class SGD Classifier is created and trained directly against
the pre-processed data, with the following parameters:

1) Loss mode is ”hinge”. This is the default value and
gives a linear SVM.

2) Penalty (regularization term) is ”l2”, the standard reg-
ularizer for linear SVM models.

3) Alpha (Constant multiplier in the regularization term)
is set to 0.001.

4) Number of iteration is set to the default value of 5.
5) Random State is set to 42. This number is the seed

value used for the random number generator. The seed
must be explicitly defined to achieve repeatable results.
In addition to SVM, multinomial Naive Bayes and

multi-variate Bernoulli Naive Bayes libraries were leveraged.
The report will focus on the results of the multinomial
Naive Bayes method, as it achieved the highest performance.

Fig. 1. Confusion Matrix of SVM algorithm.

Fig. 2. Confusion Matrix of Multi-nomial Naive Bayes algorithm.

The most significant parameter involved with optimizing this
function was the smoothing coefficient. The importance of
the inclusion of this parameter stems from needing to solve
the problem of value zero class conditional probabilities.
The smoothing parameter which, was chosen as alpha < 1.0
to implement lidstone smoothing, prevented the problem of
encountering zero probabilities.

Additionally, the choice of considering n-grams as
features was also significant in the results. This is justified in
the feature design section. The degree to which we set n is
a matter of computational power and practicality. A higher
n can dramatically increase computation time, as there are

Topic Precision Recall F1-score
hockey 0.71 0.64 0.65
movies 0.84 0.85 0.84

nba 0.70 0.60 0.65
news 0.43 0.68 0.52
nfl 0.70 0.68 0.69

politics 0.70 0.59 0.64
soccer 0.76 0.67 0.71

worldnews 0.74 0.61 0.67
TABLE II

SUMMARY OF RESULTS FOR DECISION TREE

many more permutations to consider. Through trial, it was
decided to include n-grams with n ranging from 1 to 5. This
selection kept the computational cost relatively low, while
providing a higher precision.

V. TESTING AND VALIDATION
A. Decision Trees

With K-Fold testing over the entire dataset, the fol-
lowing performance metrics were calculated. Each number
represents an average performance over the 5 folds.

The breakdown of precision for each topic is very
indicative of the nature of the data set. A prime observation to
make is that ’movies’ as a topic was very well distinguished
from the other categories. This makes intuitive sense, as
looking at the other topics, it can be seen that nfl, nba,
hockey, and soccer all fall within the realm of sports, and
therefore share a relatively homgenous vocabulary. The same
logic applies to news, politics, and worldnews. The precision
of ”News” is particularly low. This result can also be justified
by the observation that it is a superset of politics and
worldnews, making it difficult to distinguish from the other
more specific subsets. However, this could also be a symptom
of overfitting, as the tree is struggling to predict more general
topics.

The support value represents the frequency of classes
in the dataset, and is indicative that the selection of the sets
used in K-Fold testing was balanced.

The results clearly demonstrate that the model does
indeed exceed the performance of baseline random guesses,
however it does not offer optimal performance compared
with the other methods of classification explored in this
paper. Main areas of non-optimal performance can largely be
attributed to the design of the implementation. For example,
the approach used a binary classification of the data: ”did the
conversation contain the word or not”. This is a simple, but
largely flawed approach. The frequency of specific words in a
conversation can be a significant indicator in determining the
topic. In addition, groups of words that often appear together
may also be a significant indicator of topic. These issues are
unaccounted for in the implementation of the decision tree,
and are certainly major causes for its poor performance in
this particular data set.

Topic Precision Recall F1-score
hockey 0.76 0.72 0.74
movies 0.88 0.88 0.88

nba 0.70 0.92 0.65
news 0.72 0.45 0.56
nfl 0.82 0.73 0.78

politics 0.65 0.80 0.72
soccer 0.83 0.74 0.78

worldnews 0.84 0.62 0.71
total 0.74 0.72 0.71

TABLE III
SUMMARY OF RESULTS FOR NAIVE BAYES

B. Naive Bayes

In the implementation of Naive Bayes, the size of the
training set was fixed at 120,000 and the validation set at
10,000. In order to find the best subset for the classifier,
a random shuffle was used to increase performance on the
validation set. However, for the final test set prediction, the
entire data set was taken as training data. The following table
represents the data gathered over the training set of 120000,
and validated over a validation set of 10’000. As previously
seen in the discussion for the results of the decision tree,
much of the same logic applies. However, it is worth noting
that the Naive Bayes implementation on this data set has a
higher precision on most topics of conversation, and is able
to more accurately discriminate between topics with similar
vocabularies.

Fig. 3. Confusion Matrix of Bernoulli Naive Bayes algorithm.

The rows in the confusion matrix represent the actual
categories the conversations fall in, and the columns are the

predictions given by the classifier. Therefore, the brighter the
diagonal is, the more accurate our predictions are. Bernoulli
Naive Bayes’ overall performance is similar to that of
the package versions in sci-kit learn, as indicated by the
remarkable similarities in the generated confusion matricies.
It is important to note that some categories are more often
confused than others. This can be explained similarly to the
results of decision trees. The nature of the categories lends
itself to a notable overlap of common ideas, and therefore,
common vocabularies.

VI. DISCUSSION

A. Decision Trees

A major challenge in the implementation of decision
trees was the time taken to run the model. The implementa-
tion discussed has a run-time of about 90 minutes to build
the tree, and an additional 20 minutes to perform the data
preprocessing. For practical reasons, the model could not
be more complex, as it would increase the run-time too
much. The appeal of this approach lies in its intuitiveness.
It serves as a suitable stepping stone for developing ideas
on improvements that may generalize to other approaches.
The shortcomings of the decision tree implementation were
addressed in the implementation of the other methods to
much success, particularly in the Multinomial Naive Bayes
approach.

B. Naive Bayes

Given the results, the Naive Bayes algorithm imple-
mented from scratch did not perform as well as the imple-
mentation from the scikit-learn library. Possible justifications
for this shortcoming may stem from the limited number of
tokens used in the generated bag of words. The set included
less than 8500 uni-grams. The initial intention behind using
less words in the training set was to make the classifier more
sensitive to the most frequent words, which turned out to be
less in number than expected. After enlarging the number of
uni-grams to approximately 17,000, as well as including bi-
grams, the implementation achieved improved results. Due
the limited budget of computation, we did not try out a larger
scale of data. A noticeable detail while implementing Naive
Bayes was the importance of eliminating the frequently
used words shared by multiple topics. For example, ’love’
seems to be a meaningful word in the classification problem,
especially for the sentinel classification. However, for the
classification problem in this paper,the goal is not to classify
the conversations into a binary result, but rather categorical.
Therefore, words that may be more discriminative between
topics were chosen for the token set. This was done with
the aim of increasing the sensitivity of the classifier towards
distinct classes.

VII. STATEMENT OF CONTRIBUTIONS

This work was overall a team effort, but each member’s
contribution can be roughly accredited as following:

1) Dong: Implementing Naive Bayes classifier. Coding
SVM and Naive Bayes methods with scikit-learn li-
brary. Optimizing the scikit-learn library SVM and
Naive Bayes approaches.

2) Li: Implementing decision trees. Optimizing the scikit-
learn library SVM and Naive Bayes approaches.

3) Yang: Coding SVM method with scikit-learn library.
Report writing.
We hereby state that all the work presented in this

report is that of the authors.

REFERENCES

[1] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for
text categorization, vol. 752. Citeseer, 1998, pp. 41–48.

[2] T. Joachims, “Text categorization with support vector machines: Learn-
ing with many relevant features,” in European conference on machine
learning. Springer, 1998, pp. 137–142.

